Effects of naturally acidified seawater on seagrass calcareous epibionts.
نویسندگان
چکیده
Surface ocean pH is likely to decrease by up to 0.4 units by 2100 due to the uptake of anthropogenic CO2 from the atmosphere. Short-term experiments have revealed that this degree of seawater acidification can alter calcification rates in certain planktonic and benthic organisms, although the effects recorded may be shock responses and the long-term ecological effects are unknown. Here, we show the response of calcareous seagrass epibionts to elevated CO2 partial pressure in aquaria and at a volcanic vent area where seagrass habitat has been exposed to high CO2 levels for decades. Coralline algae were the dominant contributors to calcium carbonate mass on seagrass blades at normal pH but were absent from the system at mean pH 7.7 and were dissolved in aquaria enriched with CO2. In the field, bryozoans were the only calcifiers present on seagrass blades at mean pH 7.7 where the total mass of epiphytic calcium carbonate was 90 per cent lower than that at pH 8.2. These findings suggest that ocean acidification may have dramatic effects on the diversity of seagrass habitats and lead to a shift in the biogeochemical cycling of both carbon and carbonate in coastal ecosystems dominated by seagrass beds.
منابع مشابه
Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification
The unprecedented rate of CO2 increase in our atmosphere and subsequent ocean acidification (OA) threatens coastal ecosystems. To forecast the functioning of coastal seagrass ecosystems in acidified oceans, more knowledge on the long-term adaptive capacities of seagrass species and their epibionts is needed. Therefore we studied morphological characteristics of Posidonia oceanica and the struct...
متن کاملOcean acidification causes ecosystem shifts via altered competitive interactions
Ocean acidification represents a pervasive environmental change that is predicted to affect a wide range of species1,2, yet our understanding of the emergent ecosystem impacts is very limited. Many studies report detrimental effects of acidification on single species in lab studies, especially those with calcareous shells or skeletons3–5. Observational studies using naturally acidified ecosyste...
متن کاملThe effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae)
Atmospheric carbon dioxide concentrations have greatly increased since the beginning of the industrial age. This has led to a decline in global ocean pH by 0.1 units, and continued decline of 0.3–0.5 units is predicted by the end of 2100. Acidification of the ocean has led to decreased calcification rates and dissolution of calcareous structures in a range of marine species. Shells of the pearl...
متن کاملBenthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico.
Extensive CO2 vents have been discovered in the Wagner Basin, northern Gulf of California, where they create large areas with lowered seawater pH. Such areas are suitable for investigations of long-term biological effects of ocean acidification and effects of CO2 leakage from subsea carbon capture storage. Here, we show responses of benthic foraminifera to seawater pH gradients at 74-207m water...
متن کاملSeaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient
Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology letters
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2008